Exploiting BiCGstab(ℓ) Strategies to Induce Dimension Reduction

نویسندگان

  • Gerard L. G. Sleijpen
  • Martin B. van Gijzen
چکیده

IDR(s) [P. Sonneveld and M. B. van Gijzen, SIAM J. Sci. Comput., 31 (2008), pp. 1035–1062] and BiCGstab( ) [G. L. G. Sleijpen and D. R. Fokkema, Electron. Trans. Numer. Anal., 1 (1993), pp. 11–32] are two of the most efficient short-recurrence iterative methods for solving large nonsymmetric linear systems of equations. Which of the two is best depends on the specific problem class. In this paper we describe IDRstab, a new method that combines the strengths of IDR(s) and BiCGstab( ). To derive IDRstab we extend the results that we reported on in [G. L. G. Sleijpen, P. Sonneveld, and M. B. van Gijzen, Appl. Numer. Math., (2009), DOI: 10.1016/j.apnum.2009.07.001], where we considered Bi-CGSTAB as an induced dimension reduction (IDR) method. We will analyze the relation between hybrid Bi-CG methods and IDR and introduce the new concept of the Sonneveld subspace as a common framework. Through numerical experiments we will show that IDRstab can outperform both IDR(s) and BiCGstab( ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DELFT UNIVERSITY OF TECHNOLOGY REPORT 09-02 Exploiting BiCGstab(l) strategies to induce dimension reduction

IDR(s) [9] and BiCGstab(l) [5] are two of the most efficient short recurrence iterative methods for solving large nonsymmetric linear systems of equations. Which of the two is best depends on the specific problem class. In this paper we derive a new method, that we call IDRstab, that that combines the strengths of IDR(s) and BiCGstab(l). To derive IDRstab we extend the results that we reported ...

متن کامل

Dimension reduction techniques for $\ell_p$, $1 \le p \le 2$, with applications

For ℓ 2 , there exists the powerful dimension reduction transform of Johnson and Lindenstrauss [JL84], with a host of known applications. Here, we consider the problem of dimension reduction for all ℓ p spaces 1 ≤ p < ∞. Although strong lower bounds are known for dimension reduction in ℓ 1 , Ostrovsky and Rabani [OR02] successfully circumvented these by presenting an ℓ 1 embedding that maintain...

متن کامل

A Parallel Preconditioned Bi-Conjugate Gradient Stabilized Solver for the Poisson Problem

We present a parallel Preconditioned BiConjugate Gradient Stabilized(BICGstab) solver for the Poisson problem. Given a real, nosymmetric and positive definite coefficient matrix , the parallized Preconditioned BICGstab -solver is able to find a solution for that system by exploiting the massive compute power of todays GPUs.Comparing sequential CPU implementations and that algorithm.we achieve a...

متن کامل

A Parallel Preconditioned Bi-Conjugate Gradient Stabilized Solver for the Poisson Problem

We present a parallel Preconditioned BiConjugate Gradient Stabilized(BICGstab) solver for the Poisson problem. Given a real, nosymmetric and positive definite coefficient matrix , the parallized Preconditioned BICGstab -solver is able to find a solution for that system by exploiting the massive compute power of todays GPUs.Comparing sequential CPU implementations and that algorithm.we achieve a...

متن کامل

E 10 and SO ( 9 , 9 ) invariant supergravity

We show that (massive) D = 10 type IIA supergravity possesses a hidden rigid D 9 ≡ SO(9, 9) symmetry and a hidden local SO(9) × SO(9) symmetry upon dimensional reduction to one (time-like) dimension. We explicitly construct the associated locally supersymmetric Lagrangian in one dimension, and show that its bosonic sector, including the mass term, can be equivalently described by a truncation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2010